

Pogo Mine Incinerator Update December 12, 2013

Presentation to EPA by Sally McLeod, Pogo

Overview

- Takeaways
- History of Pogo's Small, Remote Incinerator
- Performance Test Results
- Audit Samples
- Electronic Reporting
- Operating Limits
- DAS and Control Equipment
- Other CISWI Requirements
- 2014 Schedule
- Takeaways

Takeaways

- Compliance with Emission Limits
 Demonstrated for all but SO₂
- Add Control Equipment?
- Seven Operating Limits Established
- DAS to be Added for Continuous Monitoring
- 2014 Schedule

Pogo's Small, Remote Incinerator

- Emission Unit 412 ACS Inc. Model PC0400
 - Combusts solid waste
 - municipal solid waste
 - non-hazardous secondary materials
 - sewage treatment plant sludge
 - Combusts < 3 tons per day
 - Located > 25 miles from nearest MSW landfill
 - Fairbanks landfill is 135 miles from Pogo

History of Pogo's Small, Remote Incinerator

Date	Action	Regulatory Authority
December 8, 2010	Unit 412 construction commenced	N/A
May 12, 2011	Unit 412 covered under ADEC Air Quality Control Minor Source Permit	AS 46.14; 18 AAC 50
February 19, 2012	Incinerator startup date	N/A
January 4, 2013	Initial notification letter to EPA	40 CFR §§ 60.2190; 60.2230
May 14, 2013	Submitted petition for site-specific operating limits to EPA	40 CFR § 60.2115
May 14, 2013	Submitted test protocols to ADEC	Minor source permit, Condition 25
June 26-28, 2013	Completed stack test consistent with CISWI requirements	40 CFR § 60.2125
Sept 27, 2013	EPA Approved Pogo's petition	40 CFR § 60.2115
Sep 29-Oct 3, 2013	Completed initial performance test	40 CFR § 60.2125
December 2, 2013	Submitted Test Report and Operating Limits Report	40 CFR §§ 60.2135 & 2200

June Stack Testing Results

Summary of June 2013 Pogo Mine Incinerator Source Test Results and NSPS Subpart CCCC Table 8 Standards

		Test Results (3-Run Average)						Calculated Results ^a		Subpart CCCC Table 8		
Method	Pollutant	lb/hr	lb/dscf	ppmvd	ug/dscm	ng/dscm	O ₂ (%)	mg/dscm	ng/dscm	ppmvd ^c	Emission Limit ^d	
RM5	PM	0.20	4.13E-06	-	-		10.66	90	-	-	270	mg/dscm
RM26A	HCl	0.66	1.33E-05	-	-		10.66	-	-	191	200	ppmvd
RM29	Cd Pb	3.98E-05 2.22E-04	8.40E-10 4.57E-09	- -	32.25 197.08		10.67 10.67	0.044 0.27	-	-	0.67 2.0	mg/dscm mg/dscm
	Нд	7.79E-06	1.66E-10	-	2.67		10.67	0.0036	-	-	0.0035	mg/dscm
RM23	D/F	- -	-	-	-	2.285 0.1154	NA ^b NA ^b	- -	2.285 0.1154	-	1800	ng/dscm Total Mass ng/dscm TEQ ^e
RM10	СО	0.005	-	1.3	-		10.7	-	-	1.8	13	ppmvd
RM7E	NOx	0.42	-	69.7	-		10.7	-	-	95	170	ppmvd
RM6C	SO ₂	0.19	-	22.2	-		10.7	-	-	30	1.2	ppmvd

^aTest results were converted to 7% O₂ and into units of the applicable emission limits

CO, NOx and SO2 were measured at pmvd

^bD/F results are reported in terms of ng/dscm at 7% O₂ - no conversions needed

[°]HCl was converted from lb/dscf to ppmvd based on MW = 36.46 lb/lbmol, and standard molar volume of an ideal gas = 385.55 dscf/lbmol (i.e., std temp = 20 °C)

^dEmission limits are measured at 7% O₂, dry basis at standard conditions

^eSubpart CCCC requires compliance with either the Total Mass Basis limit or the Toxic Equivalency Basis limit

Initial Performance Test Results

		Test Results (3-Run Average)						Calculated Results ^a		Subpart CCCC Table 8		
Method	Pollutant	lb/hr	lb/dscf	ppmvd	ug/dscm	ng/dscm	O ₂ (%)	mg/dscm	ng/dscm	ppmvd	Emission Limit	
RM5	PM	0.17	3.1E-06	-	-		10.85	72.9	-	-	270	mg/dscm
RM26A	HC1	0.54	1.1E-05	-	-		10.85	-	-	155	200	ppmvd
RM29	Cd Pb Hg	1.05E-05 3.00E-04 2.67E-06	2.1E-10 6.0E-09 5.4E-11	- - -	5.5 209.3 0.87		10.69 10.69 10.69	0.01 0.28 0.0011	- - -	- - -	0.67 2.0 0.0035	mg/dscm mg/dscm mg/dscm
RM23	D/F	-	-	-	-	0.108	10.54	-	0.14	-	31	ng/dscm TEQ
RM10	СО	0.003	-	0.8	-		10.69	-	-	1.0	13	ppmvd
RM7E	NOx	0.38	-	63.6	-		10.69	-	-	86	170	ppmvd
RM6C	SO ₂	0.17	-	20.3	-		10.69	-	-	27	1.2	ppmvd

^aTest results were converted to 7% O₂ and into units of the applicable emission limits

Waste Recipes

- Day 1: MSW 32%, Sludge 49%, Absorbs 19%
- Day 2: MSW 40%, Sludge 34%, Absorbs 27%
- Day 3: MSW 76%, Sludge 11%, Absorbs 12%
- Day 4: MSW 100%

Note: Day 4 recipe exceeded second parameter

Initial Performance Test Results

Test Parameter	Units	9/29/13	9/30/13	10/1/13	Average	Emission Standard
Particulate	mg/dscm	86.8	56.4	75.5	73	270
Sulfur Dioxide	ppmvd	35.1	30.4	19.8	27	1.2
Nitrogen Oxides	ppmvd	93.0	79.2	86.7	86	170
Carbon Monoxide	ppmvd	0.3	1.5	0.7	1.0	13
Dioxin and Furan	TEQ ng/dscm	0.0317	0.267	0.113	0.14	31
Hydrogen Chloride	ppmvd	193	136	138	155	200
Cadmium	mg/dscm	0.01	0.01	0.01	0.01	0.67
Lead	mg/dscm	0.01	0.51	0.22	0.28	2.0
Mercury	mg/dscm	0.0023	0.0009	0.0002	0.0011	0.0035

³ Visual determinations of smoke emissions were conducted between 9/30/13 and 10/1/13 according to RM 22. Visual emission frequency was zero percent for all 3 observation periods.

Initial Performance Test Issues

- Audit Samples
- Electronic Reporting
- Operating Limits
- DAS and Control Equipment

Audit Samples

- Results mixed, some passed
- Lab that provided audit samples may have made errors
- Lab that measured audit samples may have made errors and is rerunning them
- Waiting for Audit laboratory to explain initial results

Electronic Reporting

- CDX Registration / Verification for Contractors to be completed mid-December
- Electronic submittal of performance test data to begin immediately following contractor verification

Operating Limits

Operating Limits Established in Performance Test

- Waste Charge Rate ≤ 53 lb, rolling 1-hr average
- Waste Charge Interval ≥15 min
- Primary Combustion Chamber Temperature Limit¹ ≥ 1,226°F
- Secondary Combustion Chamber Temperature Limit¹ ≥ 1,785°F
- Primary Combustion Chamber Burndown Time² ≥ 5 hr
- Secondary Combustion Chamber Burndown Time³ ≥ 2 hr
- Waste Composition⁴: MSW ≤ 76%, Sludge ≤ 49%, Adsorbs ≤ 27%

¹rolling 1-hr average (of 1-min DAS-recorded values)

²primary burndown period begins after loading of final waste-charge

³secondary burndown period begins at completion of primary burndown

30 MINE

⁴daily maximum waste component limits as rolling 3-day averages

General Concept by Met-Pro Environmental

Two Stage Process

- Stage 1
 - Quench and Venturi
 - Quench is used to cool process temperature down
 - Venturi is used to separate the particulate out from the inlet stream
- Stage 2
 - Scrubber
 - Packed Tower Scrubber will remove SO₂ and HCI
 - Additional environmental benefits:
 - HCl removed by SO₂ scrubber
 - Particulate matter (PM) and metals (adsorbed onto particulate)
 removal by quench, venturi scrubber, and packed tower scrubber

Quench / Venturi

- Quench
 - Inlet temperature of 1400 deg F to be cooled to ~180 deg F
 - 304 SS Construction
- Venturi
 - Removes particulate
 10 um and greater
 - 304 SS Construction

Scrubber

- Grey FRP material
- Designed for 3,500 ACFM
- Packed tower design
- 98% efficiency removal of SO₂
- 99% efficiency removal of HCI

Other CISWI Requirements

- Waste Management Plan (§60.2055)
 - Written WMP in effect at Pogo since March 2006
 - WMP meets requirements of §60.2065
- Siting Analysis (§60.2045)
 - Completed in December 2013
- Operator Training and Qualification (§60.2070)
 - ACS (Incinerator Manufacturer) Training will be implemented to meet requirements of §60.2070(c)
 - Annual Refresher Course will be implemented to meet requirements of §60.2085
 - Documentation required in §60.2095 is available onsite & accessible to all operators

2014 Schedule

- By May 15, 2014 Install Data Acquisition and Control System (DAS) and Control Device
- By July 15, 2014 Conduct Additional Performance Test
- By September 15, 2014 Demonstrate Full Compliance

Takeaways

- Compliance with Emission Limits
 Demonstrated for all but SO₂
- Add Control Equipment?
- Seven Operating Limits Established
- DAS to be Added for Continuous Monitoring
- 2014 Schedule

